Objectives

• Understand how the ‘new’ 2L refrigerant class fits into upcoming code and safety standard changes.

• Discuss how these refrigerants might impact the industry in Canada
Refrigerant Classifications (Toxicity)

- Refrigerants are classified by flammability and toxicity by the ASHRAE Standard 34 (ISO 817 in Europe and some other countries)

<table>
<thead>
<tr>
<th>Toxicity Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>An OEL of 400ppm or greater</td>
</tr>
<tr>
<td>B</td>
<td>An OEL less than 400ppm</td>
</tr>
</tbody>
</table>

Refrigerant Classifications (Flammability)

<table>
<thead>
<tr>
<th>Flammability Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No flame propagation when tested at 60°C and 101.3 kPa</td>
</tr>
<tr>
<td>2</td>
<td>Flame propagation and LFL > 0.1 kg/m³ and HOC < 19,000 kJ/kg</td>
</tr>
<tr>
<td>2L</td>
<td>Same as 2 except Burning Velocity < 10 cm/s</td>
</tr>
<tr>
<td>3</td>
<td>Flame propagation and LFL <= 0.1 kg/m³ and HOC >= 19,000 kJ/kg</td>
</tr>
<tr>
<td>Refrigerant Class</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>A1</td>
<td>Majority of HFC refrigerants in commercial and residential use.</td>
</tr>
<tr>
<td>A2</td>
<td>Several blends that are not in widespread use</td>
</tr>
<tr>
<td>A2L</td>
<td>New refrigerants - HFOs, Some HFCs and blends.</td>
</tr>
<tr>
<td>B1</td>
<td>Some obscure refrigerants like sulfur dioxide</td>
</tr>
<tr>
<td>B2L</td>
<td>Ammonia</td>
</tr>
<tr>
<td>B2 & B3</td>
<td>Some obscure refrigerants. There are no B3 refrigerants</td>
</tr>
</tbody>
</table>

Air Conditioning

- A large amount of installed R22(HCFC) equipment remains— HFC replacement refrigerant available (R438A etc)
- New equipment R410A (HFC)
- Some equipment R407C
- Chillers R123 (HCFC) - Alternatives like R514A have a B1 classification
- New chillers R134A (HFC)
Refrigeration

- A very large number of refrigerants in use
- R404A (HFC) and R507A (HFC) make up the largest percentage of commercial refrigerant for new installations
- R134A (HFC) popular in smaller equipment
- Many existing systems are using R22 - HFC replacements are available for applications that don't use flooded chillers.
- CO₂ in limited supermarket and industrial applications
- Ammonia in large industrial applications
Codes and Standards....

• Codes and Standards can be written by anybody.
• They don’t have an impact from a legal standpoint unless they are adopted into legislation somehow.
• They can be adopted by reference (ex. Building and Fire Codes)

• Even if they are not adopted by legislation, designers may choose to use them as a basis for safe design or insurance companies may require compliance.
Recapping the History of the 2L Class

• 2010 - ASHRAE 34 added a 2L subclass to 2. This allowed the development of new rules specific to the risks associated with 2L.

• 2018 - ASHRAE 34 published an addenda that made 2L a class on its own and not a sub class of 2.
Do we know enough about the risks?

- AHRI, ASHRAE and the US DOE contributed a combined $5M to ongoing research.

What are the Risks?

- AHRI 8009 Risk Assessment 2015 Conclusion: Risks are significantly lower than the risks of common hazard events associated with other causes and also well below risks commonly accepted by the general public.

- FIRE
 - Fire Event
 - Products of Combustion = Hydrogen Fluoride

- HF was not considered in the AHRI 8009 Risk Assessment but they implied that it was not likely very relevant.
Research Update (ASHRAE)

- RP-1794 (ASHRAE) Investigation into use of Odorants in Flammable Refrigerants
- RP-1806 Flammable Refrigerants Post-Ignition Simulation and Risk Assessment
- RP-1807 Guidelines for Flammable Refrigerant Handling, Transporting, Storing and Equipment Servicing, Installation and Dismantling
- RP-1808 Servicing and Installing Equipment using Flammable Refrigerants: Assessment of Field-made Mechanical Joints

Research Update (AHRI)

- Codes and Standards
 - 8006 – Low GWP Refrigerants
- Risk Assessment
 - 8016 – Class 2L Refrigerants in Commercial Rooftop Units (2016)
- Performance/Compatibility
 - 8007 – Materials Compatibility and Lubricants (2014)
Research Update (AHRTI)

- 9007 – Whole Room Scale Leaks and Ignition Testing for A2L and A3 refrigerants
- 9013 – A2L Refrigerant Release and Ignition Study for Refrigerated Display Cases
- 9012 – Real-world Leak Assessments of Alternative Flammable Refrigerants

Future Research

- Mitigation and Combustion Product
 - There is some push that these risks have not been adequately understood (perhaps because of what industries are currently planning to use A2L refrigerants).
- Refrigerant Sensors
Training

• NATE (and I think RSES independently?) is developing training and certification in the US for technicians.

• Recent Gap Analysis Identified this as a critical gap

Mitigating the Risks

• Air Movement
• Charge Limits
Refrigerant Concentration Limits

- How much refrigerant can we have in a system that’s in an occupied space - kg/m3
- Available in ASHRAE 34 and CSA B52.
- For most of the refrigerants we are used to, cardiac sensation/toxicity or asphyxiation determine the RCL.
- Flammable A2L refrigerants all have and RCL that is 25% LFL at the moment.

ASHRAE 15 2018 – Addendum D

- This addendum will allow the use of A2L refrigerant in direct systems for comfort cooling (i.e. Split system air conditioners, PTACs, Roof top units, etc.)
- Addendum D has been ongoing for several years. It went for its first public review in 2016 and just completed its 4th public review.
ASHRAE 15 – Addendum D

• Requires equipment to be listed by a recognized listing agency.

• The technical requirements for allowing the flammable refrigerants are centered around rapid leak detection and air movement.
 • Refrigerant detectors are required by 15 when the refrigerant exceeds an amount based on the LFL of the particular refrigerant
 • The listing may require leak detectors as well.
 • The detector will have to turn on the fan and shut off most electrical components.
 • Requires listed VAV boxes that have to be open wide when a leak is detected.
 • Very specific operational requirements for leak detectors (15 seconds to accomplish all actions at 25% LFL)
 • Annual leak detector testing requirements.

ASHRAE 15 2018 – Addendum H

• This addendum will allow the use of A2L refrigerants in machine room applications (i.e. Chillers and Plant rooms)

• Addendum H has been ongoing for several years. It went for its first public review in 2016 and just completed its 3rd public review.
ASHRAE 15 – Addendum H

• Leak detection, visual and automatic alarm requirements
• Gets a similar classified electrical exemption to ammonia
• Leak detection must shut off all electrical over a certain energy level in the room at 25% LFL

• Extensive work was done on machine room ventilation and two levels are required.
ASHRAE 15 2018

• Addendum A removed Ammonia from 15
• The next work is to include changes for 2L refrigerants for other applications (i.e. commercial refrigeration)
• ASHRAE is developing a 15.2 standard for residential applications.

Listed Equipment

• 60355-2-40 currently allows small amounts of flammable refrigerant.
• Work is ongoing for significant increases and the addition of A2L. Mid-winter publication of draft?
• Large multi-national endeavour and CSA is involved
In Canada...

- CSA B52 is the safety code for refrigeration and it relies heavily on ASHRAE 15 for technical content.

- B52 currently allows up to 6.6lb of ANY refrigerant in any occupancy as long as the system is ‘listed’ AND the installation complies with the listing agency’s installation requirements.

- B52 specifically does NOT cover residential air conditioning but yet the standard is called on by CSA product standards for the refrigerant properties.

Adoption of codes and standards

10(1) Each of the following codes and standards, as amended from time to time, is adopted for the purposes of the Act as a standard governing the design, construction, shop inspection, installation, repair or alteration of boilers, pressure vessels or pressure piping systems:

(a) Canadian Standards Association standard B51-03 Boiler, Pressure Vessel, and Pressure Piping Code;

(b) Canadian Standards Association standard B52-05, Mechanical Refrigeration Code;

(c) American National Standards Institute, Inc. standard ANSI K-61.1-1999/CGA G-2.1 Safety Requirements for the Storage and Handling of Anhydrous Ammonia;

(e) The National Board of Boiler and Pressure Vessel Inspectors (United States) standard ANSI/NB-23 National Board Inspection Code 2004 edition;

(f) Canadian Standards Association standard CAN/CSA-B149.2-00 Propane Handling and Storage Code.
Summary for Canada

• Equipment that uses A2L refrigerant may be available in North America on a much large scale in the near future.
• B52 will most likely cover the safe installation and operation of some of this equipment but there is significant work remaining.
• B52 wouldn’t cover residential AC directly (the primary initial market?)
• The building codes are going to require modification to ensure that some of the safety requirements are captured for new installation
Summary for Canada

- What happens when the listing requires compliance with a US installation code – How does this get handled in Canada?
 - Canada has for the most part been absent in the code discussions.
- If everything under 3 tons is exempt, is there an avenue for enforcement?
- How would enforcement work? What about the requirements for annual leak detector calibration or testing?
- We are going to have to pay more attention to RCL calculations? Think commercial properties!

Potential Pitfall?
Refrigerant Trends

- Environmental regulation is driving the changes.
- Different jurisdictions are acting with different urgency and direction
- A patchwork of codes, standards, legislation and regulation exists allowing some adoption of flammable and slightly flammable refrigerant
- Technology exists in most cases (but not all) to phase down and limit high GWP HFC refrigerants

HFOs and Low GWP refrigerant

- Current systems are available throughout the world using R32
- Increasing use in air conditioning applications
- Some automobile AC
- Possible use in commercial refrigeration
- Extensive use in Canada or US requires code changes which is underway.
- Currently treated as A2 so limited to 22lb in Canada for direct system (commercial)
- Indirect systems would require machine room and only commercial occupancy
Hydrocarbons – Small Systems

- Use in supermarkets with self contained low charge cases
- Retail vending machines
- Small self contained commercial equipment
- Room air conditioners and dehumidifiers (Charge limited by room size up the approximately 1 kg – this amount is likely changing)
- Residential refrigerators

- No code changes required for use in Canada if the equipment is listed.

Ammonia

- Industrial refrigeration
- Commercial refrigeration
- Air conditioning (chillers)
- District heating

- Increasing use in industrial plants
- Focus on low charge systems
- Commercial refrigeration using secondary coolant
- Cascaded with CO\textsubscript{2} in industrial
- Outdoors or machine rooms
Hydrocarbons – Large Systems

- Chillers (Indirect air conditioning)
- Industrial Applications

- Propane use as a refrigerant is common in oil processing
- Prohibited in Canada except in industrial applications
- Code changes required for most uses

CO₂

- Commercial refrigeration
- Auto AC
- Industrial Applications

- Currently in use in supermarkets and arenas and in thermosiphon server room AC.
- More applications possible.
- Not restricted and no code changes required
- Higher pressures
- Complicated controls in transcritical
- Increases safety/food safety in industrial systems
Questions?